Impacts of Penicillin Binding Protein 2 Inactivation on β-Lactamase Expression and Muropeptide Profile in Stenotrophomonas maltophilia
نویسندگان
چکیده
Penicillin binding proteins (PBPs) are involved in peptidoglycan synthesis, and their inactivation is linked to β-lactamase expression in ampR-β-lactamase module-harboring Gram-negative bacteria. There are seven annotated PBP genes, namely, mrcA, mrcB, pbpC, mrdA, ftsI, dacB, and dacC, in the Stenotrophomonas maltophilia genome, and these genes encode PBP1a, PBP1b, PBP1c, PBP2, PBP3, PBP4, and PBP6, respectively. In addition, S. maltophilia harbors two β-lactamase genes, L1 and L2, whose expression is induced via β-lactam challenge. The impact of PBP inactivation on L1/L2 expression was assessed in this study. Inactivation of mrdA resulted in increased L1/L2 expression in the absence of β-lactam challenge, and the underlying mechanism was further elucidated. The roles of ampNG, ampDI (the homologue of Escherichia coli ampD), nagZ, ampR, and creBC in L1/L2 expression mediated by a ΔmrdA mutant strain were assessed via mutant construction and β-lactamase activity determinations. Furthermore, the strain ΔmrdA-mediated change in the muropeptide profile was assessed using liquid chromatography mass spectrometry (LC-MS). The mutant ΔmrdA-mediated L1/L2 expression relied on functional AmpNG, AmpR, and NagZ, was restricted by AmpDI, and was less related to the CreBC two-component system. Inactivation of mrdA significantly increased the levels of total and periplasmic N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-l-alanyl-d-glutamyl-meso-diamnopimelic acid-d-alanine (GlcNAc-anhMurNAc tetrapeptide, or M4N), supporting that the critical activator ligands for mutant strain ΔmrdA-mediated L1/L2 expression are anhMurNAc tetrapeptides. IMPORTANCE Inducible expression of chromosomally encoded β-lactamase(s) is a key mechanism for β-lactam resistance in Enterobacter cloacae, Citrobacter freundii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The muropeptides produced during the peptidoglycan recycling pathway act as activator ligands for β-lactamase(s) induction. The muropeptides 1,6-anhydromuramyl pentapeptide and 1,6-anhydromuramyl tripeptide are the known activator ligands for ampC β-lactamase expression in E. cloacae. Here, we dissected the type of muropepetides for L1/L2 β-lactamase expression in an mrdA deletion mutant of S. maltophilia. Distinct from the findings with the ampC system, 1,6-anhydromuramyl tetrapeptide is the candidate for ΔmrdA-mediated β-lactamase expression in S. maltophilia. Our work extends the understanding of β-lactamase induction and provides valuable information for combating the occurrence of β-lactam resistance.
منابع مشابه
Involvement of mutation in ampD I, mrcA, and at least one additional gene in β-lactamase hyperproduction in Stenotrophomonas maltophilia.
It has been reported that targeted disruption of ampD I or mrcA causes β-lactamase hyperproduction in Stenotrophomonas maltophilia. We show here that β-lactamase-hyperproducing laboratory selected mutants and clinical isolates can have wild-type ampD I and mrcA genes, implicating mutation of at least one additional gene in this phenotype. The involvement of mutations at multiple loci in the act...
متن کاملDeletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in Shewanella oneidensis
Production of chromosome-encoded β-lactamases confers resistance to β-lactams in many Gram-negative bacteria. Some inducible β-lactamases, especially the class C β-lactamase AmpC in Enterobacteriaceae, share a common regulatory mechanism, the ampR-ampC paradigm. Induction of ampC is intimately linked to peptidoglycan recycling, and the LysR-type transcriptional regulator AmpR plays a central ro...
متن کاملCatalytic Spectrum of the Penicillin-Binding Protein 4 of Pseudomonas aeruginosa, a Nexus for the Induction of β-Lactam Antibiotic Resistance
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen. A primary contributor to its ability to resist β-lactam antibiotics is the expression, following detection of the β-lactam, of the AmpC β-lactamase. As AmpC expression is directly linked to the recycling of the peptidoglycan of the bacterial cell wall, an important question is the identity of the signaling molecule(s) ...
متن کاملThe effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia
Outer membrane vesicles (OMVs) are small nanoscale structures that are secreted by bacteria and that can carry nucleic acids, proteins, and small metabolites. They can mediate intracellular communication and play a role in virulence. In this study, we show that treatment with the β-lactam antibiotic imipenem leads to a dramatic increase in the secretion of outer membrane vesicles in the nosocom...
متن کاملPhenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and β-Lactamase Expression
Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas maltophilia has been frequently isolated from cystic fibrosi...
متن کامل